
DIY 3D Printer Build Plans
Workhorse Printer
The WorkHorse is a large scale machine platform for 3d printing.
SolidCore CoreXY 3D Printer
Modular Scalable Linear Rails Balanced Carriage Pull Enclosure BOM utilizes most available parts All Metal Parts or 3D Printed Z-Axis: Independent Driven or Shared Belt Routing
DIY 3D Printer Kits
- DIY 3D Printer Build Plans
- DIY 3D Printer Kits
- WorkHorse – Large Scale 3D Printers
- Workhorse and Workhorse XL 3D Printer
- WorkHorse 3D Printer
- Lead Screw Driven Motion
- WorkHorse Build Volume
- WorkHorse XL Build Volume
- Fixed Bed
- Configurable / Customizable
- WorkHorse 3D Printer
- Electronics
- Documentation
- SolidCore CoreXY
- Design Constraints In Large Scale 3D Printers
- Lead Screw & Ball Screw vs Belt Driven
- High Quality Lead Screw vs Cheap Lead Screw
- Lead Screw & Ball Screw Print Speed
- Lead Screw Pitch And Required Torque
- Building A Large 3D Printer
- Frame
- 3D Printing Large Objects
- Workhorse Printer Parts
- SolidCore Parts
WorkHorse – Large Scale 3D Printers

Workhorse and Workhorse XL 3D Printer
- OPEN SOURCE
- LARGE BUILD VOLUME
- XYZ-axis Lead Screw Motion System
- Fixed Bed Moving Gantry
WorkHorse 3D Printer
The Workhorse Printer is a open-source designed by 3D Distributed. In this mechanical arrangement lead screw driven motion is used on the X,Y, and Z axis .
Lead Screw Driven Motion
Most 3d printers use belt driven motion in the x and y axis to increase print speed but a belt driven motion system may lose quality when more weight is applied to the gantry or carriage. The Workhorse utilizes Igus lead screw on the X and Y-Axis. The high helix pitch includes a twelve start thread to allow increased print speeds while maintaining the quality of a ball printer. The robust and rigid motion system is particularly useful in applications that add more weight to the gantry or carriage. Materials such as clay, chocolate, plastic pellet extrusion or other foods can increase weight that is moved around which results decreased quality or print speeds. We originally designed the fdm 3d printers to be driven by ball screws but quickly switched to multi-start lead screw to increase travel speed. If your looking for a belt driven configuration check out our new corexy kit.

WorkHorse Build Volume
- Build Volume – 650 x 350 x 350 mm
WorkHorse XL Build Volume
- Build Volume – 650 x 650 x 650 mm
Fixed Bed
While most large format printers use a moving bed that moves along the Z-Axis, the Workhorse’s fixed bed and moving gantry design is more ideal for the large scale 3d printing process.
Configurable / Customizable
The Workhorse 3d printer is available with custom mods and upgrades. We’ve several custom designed machines for many of our customers. If there is a specific size or requirement you just give us a shout. Additive manufacturing has many applications and we designed this modular platform to be adaptable and scalable for your industrial printing needs.

WorkHorse 3D Printer
- See WorkHorse Printer
- See WorkHorse XL
- See All Metal Part Store
Electronics

We recommend the Duet 3 by Duet3D.
See RepRap Firmware
Documentation
Google Drive Folder
See WorkHorse BOM
SolidCore CoreXY

See SolidCore CoreXY
see SolidCore BOM


Design Constraints In Large Scale 3D Printers
Larger Printers can be much more challenging to get the same performance as smaller printers due to rigidity, deflection and smoothness of gantry or bed motion. This relates to the typical speeds and forces applied to mechanical components while in motion. The idea is to reinforce areas that experience more force or deflection without increasing gantry weight or over designing in a way that may introduce mechanical binds or resonance.
Lead Screw & Ball Screw vs Belt Driven
There are many decisions to make when building a large format 3d printer. The wrong mechanical arrangement can compromise speed and quality. Lead screw is known for backlash but backlash can be eliminated using anti backlash nuts. Lead screw pitch is another critical decision to make. Most lead screws don’t have the lead to compete with speed but the precision can be well suited. Once dialed in, the repeatability is useful for long prints.
Ball screw or lead screw may not always be the right choice because of wobble and resonance. Large 3d printers that use belts require frequent maintenance as the belts need tightening or tensioning to prevent missed steps. Lead screws for the X and Y axis can be precise and reliable if properly implemented.
High Quality Lead Screw vs Cheap Lead Screw
Quality lead screws and ball screws cost much more but cheap lead screws can have tolerance issues. Longer ball screws may wobble at a distance and need support and rigidity. Although backlash is mostly a problem in XY-axis movements while the z-axis is the preloaded weight of the bed and gravity.
Lead Screw & Ball Screw Print Speed
A large stepper motor such as a Nema 23 must be used for the X and Y axis depending on the lead screw length. Issues with speed, resonance, artifacts can be a challenge in any 3d printer build but can be reduced by travel speed and acceleration but is compromised with slower travel speed the longer it takes to print an object.
Lead Screw Pitch And Required Torque
Lead screws are similar to a gear, when the pitch changes the lead and torque required to drive the system changes as well. Most 3D printers use 1/16 or 1/32 microstepping but the resolution of 3d printed plastic can only be so precise. Larger stepper motors have more inductance and need more voltage to reach the same RPM. Increasing the step rate for the reduced travel rate of the drive, a higher voltage stepper driver and supply may be needed to reach ideal motor performance.
Building A Large 3D Printer

The best thing to do is keep the mindset that the printer you’re designing is going to be built to print “X.” Do you want a printer that prints long but short parts or do you want a printer that prints tall parts. You can increase all three directions but that’s where things get more challenging for repeatability and acquiring the needed speeds and quality. It’s totally possible and the many problems that may be introduced can be designed around.

Frame
Regarding the 3d printer frame rigidity, I would just suggest larger width extrusions depending on the length and adding gussets where needed. The only reason I go in such detail is because I get a lot of requests from people wanting me to design a printer with a “1000mm x 1000mm x 1000mm build area. The trick is to avoid the sacrifice of performance, speed and repeatability which becomes more and more challenging. The last thing you want is a really big 3d printer that’s really slow or has repeatability problems. You may or may not have the necessary design solution to avoid this scenario. From my experience the challenge is balancing rigidity, repeatability and reliability without exponentially increasing the price. Whether you’re aiming for a moving bed or moving gantry you need to add rigidity without over constraining the motion. You’ll experience this in z-axis repeatability between prints and bed leveling. For example, you probe your bed with an auto level routine followed by a mesh leveling routine. Everything is perfect depending on the flatness of your bed compared to rigidity of the overall system. Then the bed probe routine is followed by a G28 homing of the z-axis. An over constrained bed or gantry may experience some repeatability issues after traveling home and returning to the print surface which will result in a bad first layer. But let’s assume everything is good. So proceed to print your object. After the object is finished the next step is to remove the object.
3D Printing Large Objects

3d printing larger objects is going to be more difficult to remove and the process of removal will result in forces applied to the bed or gantry which will cause the bed or gantry to experience some sort of misalignment. So the following print will experience some sort of bed leveling issue resulting in a bad first layer. But your first layer is the most critical and will affect the rest of the print such as warping from bed adhesion or the object becoming loose from the bed. The longer the print takes the more critical layer adhesion becomes. But you can minimize this chain reaction by re-probing the bed before each print. But this takes a long time due to the increased number of points the probe maps out. You could reduce the number of points but a larger print bed will include more dips and peaks from stresses or bows. So you have to maximize the number of points used in probing so that the machine can compensate for each to get that first layer. Another issue to prepare for is the environment’s effect from the introduced heat of the printed object relative to the dimensional stability of the mechanical components and bed.
Workhorse Printer Parts
-
WorkHorse Printer Y-Carriage$24.50
-
Nema 23 Bridge Mount-3030$22.50
-
WorkHorse Printer Linear Rail Kit$364.50
-
WorkHorse Printer Z-Axis Lead Screw Set$45.36
-
WorkHorse Printer Build Plate$137.00
-
WorkHorse Stepper Motor Pack$74.95
-
Nema 23 Mounting Bracket$20.00
-
WorkHorse Gantry Plates$80.00
-
Nema 23 2040 L-Bracket$17.50
-
Nema 23 Motor Bridge Mount$25.00
-
Nema 23 Motor Mount 90 Degree$20.00
-
WorkHorse Printer Parts Kit$395.00
SolidCore Parts
-
SolidCore CoreXY LightWeight Y-Carriage Upgrade$35.00
-
SolidCore 2020 Frame Gussets$13.00
-
SolidCore X-Carriage Set: Weight Reduced-Light Weight Upgrade$67.00
-
Kinematic Mounting Bracket Kit$75.00
-
MGN12 Linear Rail Stop-Alignment Tool 2020$10.00
-
Kinematic Coupling Mounts With Magnetic Preload$45.00
-
Kinematic Coupled Mounts$25.00
-
Triple Z Idler Mount Set$55.00
-
SolidCore Stealth XY-Motor Mounts Upgrade$50.00
-
SolidCore XY Idler Pulley Bracket$40.00
-
SolidCore CoreXY Mechanism with Motor Mount Upgrade$185.00
-
Kinematic Mounting Bracket-Fixed-Neutral$18.00
-
CoreXY Mechanism$155.00
-
Linear Rail Stop 2020$10.00
-
Belt Clamp$3.00
-
Endstop Switch Mount – 2040$8.00
-
Hotend Mount BLtouch / E3D$20.00
-
SolidCore Z-Bracket$17.50
-
Nema 17 Z-Axis Motor Mount$17.50
-
Triple Z / Belted Z-Axis Motor Mount$20.00
-
SolidCore CoreXY Y-Carriage$25.00
-
SolidCore X-Carriage Kit$45.00
Hello Dear All,
Can you share the firmware code for teenager developers ? I appreciate. Thank you for your work and help.
Yes, you can find the firmware files on this page. https://3ddistributed.com/duet-wifi/ and there’s some also some electronics and firmware videos on this page https://3ddistributed.com/3d-printer-assembly-instructions/.
Looking at the Workhorse printer it would be very well suited to my needs. The BOM is mostly easy to follow say for the actual dimensions and pitch of the Z axis leadscrews. Also the Igus part numbers don’t exactly line up. I’m just trying to make a cost list and make sure I gather the correct components.
The Igus part numbers don’t line up? They must of changed the part numbers or something. I’ll look into this. Let me know if you have any questions.
madiabby123 please share your BOM research, I’m investigating a build as well. If you have completed the build, would like to hear about your experience.
This printer is something I have been searching for a while, with my intention of building a printer for exotic materials that requires a heated chamber. However, the Thingiverse page of the Workhorse states that it is still WIP, and I believe there isn’t a model of the printer fully assembled there, just models of individual separate parts there. The best model I’ve found is one of the frame assembled, but not including the bed and other things.
As I’m not that versed on the mechanical side of designing (although I can make and modify simple things), I find it difficult to modify these files for something more like what I need (a printer with 250mm×250mm×300mm print volume). Could you update Thingiverse with a file of a model of the fully assembled Workhorse? That would help me immensely. Thank you for your time.
Yeah I’ll check it out….. There should be a step file of the complete assembly. I always keep the WIP because I feel that there’s always room for improvement and I;m never finished with the design process. To be honest, everytime we make a batch of parts there’s always some type of change. Usually small changes that make it easier to assemble or manufacture, or even reduce the chance of something being assemble wrong.
Shane, the latest files are from 2018, any new updates or learnings you would share?
Great work people. I was also thinking to make similar printer. But I couldn’t figure out the length of Acme Leadscrew Mcmaster Carr (Z Axis) in BOM.
Thanks for sharing such a good design.
Can you explain how you fixed the linear guide rails on the aluminium extrusions.
The z-axis lead screw is 500mm long.
The linear rails are just screwed down to the extrusion. We use an alignment tool to keep it in the correct position.
Hi, sir. thx to your design and sharing it with us, I found what I was looking for and I like it a lot. actually your design is inspiring for even bigger models (the bigger the better). I’m building the workhorse and I’m working on it. I understood the physical mechanism but I’m new with electronic stuff and I couldn’t understand how did you setup and connected two motors on one axis. can you send me the schematic map? because I asked from an electronics student (which is my friend). he told me it is possible but your motors have the half current and your printer would work very slow. if you could tell us more about the schematic map and how does it work or share the schematic map, we could understand better how your machine works. I googled and searched about how to setup two motors on one axis, but I couldn’t find something handy. nobody explain it.
and finally I appreciate what you do here. good luck.